最近、いろいろなことろで注目を集めている「AI」「機械学習」「ディープラーニング」。
これらの技術は、画像認識・自然言語処理・音声処理などの分野で幅広く利用されはじめており、専門性をもつ研究者だけが利用するものではなく、ECサイトのおすすめ広告やSNSにおける顔認識、その他Amazon AlexaやGoogle Home, Siriなど、身近な技術に活用されるようになった。
そんな、「AI」「機械学習」「ディープラーニング」に最適化されたマシンとして、NVIDIA社から「ELITE SOLUTION PROVIDER」※として表彰された、GDEP アドバンスの「DeepLearning BOX」がある。これから2回にわたって、このマシンのもつポテンシャルを探っていきたい。
※製品に関する深い知識と販売実績を誇るパートナーに与えられる賞
まず、一回目はマシンにプレインストールされているWindows 10環境を使って、「TensorFlow」と「Cognitive Toolkit(CNTK)」の2つのフレームワークを試してみることにする。
目次
ディープラーニング用にチューニングされた高性能マシン
多くの対応フレームワーク
MNISTを使ったディープラーニング
機械学習における文字認識とは
TensorFlowによる深層学習を試す
Cognitive Toolkit (CNTK)による深層学習を試す
「DLスタートアップサポート」もあり
ディープラーニング用にチューニングされた高性能マシン
今回のマシンのスペックは以下のとおり。
このスペックを見ると、非常に高性能なグラフィックボードや潤沢なメモリが搭載されている。これらは、ディープラーニングで行なう演算や並列処理のために必要になるからだ。
普段、我々が利用するパソコンなどに搭載されているCPUは、OSの処理やアプリケーションでの計算など、あらゆる演算や処理をしている。
このようなCPUは、あらゆる処理ができるよう汎用的な処理能力をもつ。
それに対して、グラフィックボードに搭載されるGPUは、「3D」や「コンピューターグラフィックス」に用いられる行列計算などの演算に強いことが特徴である。
無料メルマガ会員に登録しませんか?
IoTに関する様々な情報を取材し、皆様にお届けいたします。