東芝、車載カメラと慣性センサを用いた「自車両の動き推定AI」と「他車両の動き予測AI」を開発

近年、交通事故の防止や運転負荷の軽減を目的として、先進運転支援システム(ADAS)が搭載された自動車の販売台数が伸びるとともに、社会の自動運転に対する関心が日々高まっている。ADASや自動運転システムを搭載した世界の自動車の販売台数は2018年には2千万台だが、2030年には8千万台を超えるという予測もあるという。

自動車の安全走行には、自車両の動きの正確な推定と、他車両の将来の動きを正確に予測する技術が不可欠である。現在ADASにおいてはLiDAR(※)やGPS等のセンサを用いた技術が開発されているが、高価であったり周辺の建物等によっては衛星からの電波が届かず計測ができないといった課題がある。

また、将来の動きを高精度に予測するためには、周辺道路の車線数や曲率などの道路形状に合わせてそれぞれ予測AIモデルを用意する必要があり、様々な交通シーンや車両の動きが想定される一般道への対応が難しいのが現状だ。

株式会社東芝は、自動車やドローンなどの安全性向上や自動走行・自律移動の実現に向けて、安価かつ電波等の環境に依存しない車載カメラと動きを検知する慣性センサ(加速度センサ、角速度センサ)を用いて、自車両の動きを推定する「自車両の動き推定AI」と、様々な交通シーンで周辺車両の将来の動きを予測する「他車両の動き予測AI」を開発した。

自車両の動き推定AIは、車載カメラ画像から周囲環境の3次元空間地図の生成と車両位置の推定を同時に行う技術(Simultaneous Localization and Mapping)をベースに、加速度センサや角速度センサといった慣性センサ(Inertial Measurement Unit)を用いることで様々な風景に対応する。

従来、高速道路で車両の速度が一定でセンサの値に変化がないと言った際はセンサのノイズのほうが有効な信号より大きくなり、推定精度に悪影響を及ぼす問題があったが、今回、車両の動きに応じて画像(カメラ)、加速度センサ、角速度センサごとのデータの有用性を各時刻で判定し、変化がある有効なセンサだけを適宜組み合わせて車両の動きを推定する手法を開発した。

同AIは、自動車のように加減速が比較的少ない動き方から、ドローンのような加減速の大きい動き方まで対応可能だ。公開されているデータセットを用いて検証したところ、カメラと慣性センサから得られるデータをもとに推定する従来手法に比べて誤差を40%低減し、カメラのみを用いた場合との比較では誤差を82%低減して、真値の軌跡とほぼ一致する結果を確認した。

一方の他車両の動き予測AIは、道路形状などを一般化した幾何学的な特徴をディープラーニングで学習することで、実際の道路の形状に依存しないAIが実現でき、様々な交通シーンが想定される一般道等においても膨大な数の予測AIモデルの作成が不要となる。

車線ごとの動きの予測と将来走行する可能性の高い車線を予測する2段階構成となっており、多様な道路形状に対応している。公開されているデータセットを用いた実験では、他車両の将来位置予測(4秒先の位置の予測)において、従来手法と比較して誤差を40%以上削減することを確認した。
東芝、車載カメラと慣性センサを用いた「自車両の動き推定AI」と「他車両の動き予測AI」を開発
東芝は今後、今回開発した技術を公道など実際の環境で評価を行い、2023年度の実用化を目指す。

※ LiDAR:Light Detection and Rangingの略。3次元情報を取得可能なレーザー光を用いた距離センサ。

Previous

アドバンテックテクノロジーズとビットメディア、AIを活用したCOVID-19感染抑制ソリューションを共同開発

三菱電機、逆強化学習を活用して人と機械が混在する生産・物流現場での作業効率化を支援する「人と協調するAI」を開発

Next